Unveiling the activation dynamics of a fold-switch bacterial glycosyltransferase by 19F NMR.

Liebau J, Tersa M, Trastoy B, Patrick J, Rodrigo-Unzueta A, Corzana F, Sparrman T, Guerin ME, Mäler L

J. Biol. Chem. 295 (29) 9868-9878 [2020-07-17; online 2020-05-20]

Fold-switch pathways remodel the secondary structure topology of proteins in response to the cellular environment. It is a major challenge to understand the dynamics of these folding processes. Here, we conducted an in-depth analysis of the α-helix-to-β-strand and β-strand-to-α-helix transitions and domain motions displayed by the essential mannosyltransferase PimA from mycobacteria. Using 19F NMR, we identified four functionally relevant states of PimA that coexist in dynamic equilibria on millisecond-to-second timescales in solution. We discovered that fold-switching is a slow process, on the order of seconds, whereas domain motions occur simultaneously but are substantially faster, on the order of milliseconds. Strikingly, the addition of substrate accelerated the fold-switching dynamics of PimA. We propose a model in which the fold-switching dynamics constitute a mechanism for PimA activation.

Swedish NMR Centre (SNC) [Collaborative]

PubMed 32434931

DOI 10.1074/jbc.RA120.014162

Crossref 10.1074/jbc.RA120.014162

pii: S0021-9258(17)48929-0
pmc: PMC7380196