Longitudinal Exposomics in a Multiomic Wellness Cohort Reveals Distinctive and Dynamic Environmental Chemical Mixtures in Blood.

Sdougkou K, Papazian S, Bonnefille B, Xie H, Edfors F, Fagerberg L, Uhlén M, Bergström G, Martin LJ, Martin JW

Environ. Sci. Technol. 58 (37) 16302-16315 [2024-09-17; online 2024-09-05]

Chemical exposomes can now be comprehensively measured in human blood, but knowledge of their variability and longitudinal stability is required for robust application in cohort studies. Here, we applied high-resolution chemical exposomics to plasma of 46 adults, each sampled 6 times over 2 years in a multiomic cohort, resulting in 276 individual exposomes. In addition to quantitative analysis of 83 priority target analytes, we discovered and semiquantified substances that have rarely or never been reported in humans, including personal care products, pesticide transformation products, and polymer additives. Hierarchical cluster analysis for 519 confidently annotated substances revealed unique and distinctive coexposures, including clustered pesticides, poly(ethylene glycols), chlorinated phenols, or natural substances from tea and coffee; interactive heatmaps were publicly deposited to support open exploration of the complex (meta)data. Intraclass correlation coefficients (ICC) for all annotated substances demonstrated the relatively low stability of the exposome compared to that of proteome, microbiome, and endogenous small molecules. Implications are that the chemical exposome must be measured more frequently than other omics in longitudinal studies and four longitudinal exposure types are defined that can be considered in study design. In this small cohort, mixed-effect models nevertheless revealed significant associations between testosterone and perfluoroalkyl substances, demonstrating great potential for longitudinal exposomics in precision health research.

Exposomics [Collaborative]

PubMed 39236221

DOI 10.1021/acs.est.4c05235

Crossref 10.1021/acs.est.4c05235


Publications 9.5.0