Rohlin A, Eiengård F, Lundstam U, Zagoras T, Nilsson S, Edsjö A, Pedersen J, Svensson J, Skullman S, Karlsson BG, Björk J, Nordling M
Genes Chromosomes Cancer 55 (1) 95-106 [2016-01-00; online 2015-10-23]
Hereditary factors are thought to play a role in at least one third of patients with colorectal cancer (CRC) but only a limited proportion of these have mutations in known high-penetrant genes. In a relatively large part of patients with a few or multiple colorectal polyps the underlying genetic cause of the disease is still unknown. Using exome sequencing in combination with linkage analyses together with detection of copy-number variations (CNV), we have identified a duplication in the regulatory region of the GREM1 gene in a family with an attenuated/atypical polyposis syndrome. In addition, 107 patients with colorectal cancer and/or polyposis were analyzed for mutations in the candidate genes identified. We also performed screening of the exonuclease domain of the POLE gene in a subset of these patients. The duplication of 16 kb in the regulatory region of GREM1 was found to be disease-causing in the family. Functional analyses revealed a higher expression of the GREM1 gene in colorectal tissue in duplication carriers. Screening of the exonuclease domain of POLE in additional CRC patients identified a probable causative novel variant c.1274A>G, p.Lys425Arg. In conclusion a high penetrant duplication in the regulatory region of GREM1, predisposing to CRC, was identified in a family with attenuated/atypical polyposis. A POLE variant was identified in a patient with early onset CRC and a microsatellite stable (MSS) tumor. Mutations leading to increased expression of genes can constitute disease-causing mutations in hereditary CRC syndromes.
Swedish NMR Centre (SNC) [Collaborative]
PubMed 26493165
DOI 10.1002/gcc.22314
Crossref 10.1002/gcc.22314